Background

- Language users are often repetitive
 - They repeat referring expressions (Brennan & Clark, 1996)
 - They repeat syntactic structures (Bock, 1986; Branigan, Pickering, & Cleland, 2000)
- Why repeat?
 - Repeated terms understood faster than novel ones when used by old conversational partner (Metzing & Brennan, 2003)
 - No effect when used by new partner
 - Suggests repetition is communicatively beneficial
 - Collaborative approach (Clark, 1996)
 - Repeating referring expressions reinforces shared perspective of communicative partners
 - Alignment model (Pickering & Garrod, 2004)
- Present study
 - Does repetition of syntactic structures increase communicative efficiency too?
 - Investigate communicative benefit through production-to-comprehension priming

Experiment 1

Participants: 48 UCSD students

Materials:
- 72 object pictures (Szekely et al., 2004)
- Targets had multiple acceptable names (e.g., couch/sofa)
- 96 syntactic pictures
- Targets described dative relationships (e.g., giving)

Design:
- 48 lexical and 48 syntactic trials; half filler

Discussion:
- Main effects of Task and Repetition
- Bigger repetition benefits on lexical trials and from human partners
- Lexical trials: Repetition benefits for both old and new partners
 - Not partner-specific
 - Syntactic trials: Repetition benefit only for old partner, none for new partner
 - Equivocal support for partner-specificity

Experiment 2

Motivation for Experiment 2:
- Are repetition benefits partner-specific?
- Collaborative accounts: Yes; conceptual pacts
- Alignment accounts: No; automatic priming

Participants: 48 UCSD students

Materials: Same as Experiment 1

Design: Same as Experiment 1, with one difference
- On half of trials, target description provided by new ‘partner’ (computer) instead of old partner (confederate)

Discussion:
- Main effects of Task and Repetition
- Bigger repetition benefits on lexical trials and from human partners
- Lexical trials: Repetition benefits for both old and new partners
 - Not partner-specific
 - Syntactic trials: Repetition benefit only for old partner, none for new partner
 - Equivocal support for partner-specificity

Experiment 3

Motivation for Experiment 3:
- Possible confound in Experiments 1-2: Participants chose their own referring expressions
 - "Repetition benefit" could just be a preference benefit

Participants: 48 UCSD students

Materials: Same as Experiment 1

Design:
- 2 experimental sessions, one week apart
- Session 1: Determine participants’ preferences
 - Participants presented with every lexical and syntactic picture one at a time; described each
 - Descriptions coded, used to determine target descriptions on Session 2 preference-only trials
- Session 2: Assess priming and preference benefits
 - ‘Partner’ always computer
 - Prime trials: Same as in Experiment 2
 - Target descriptions based on what participant just said
 - Preference-only trials: Targets not preceded by primes
 - Target descriptions based on what participant said in Session 1

Discussion:
- Main effects of Task and Repetition
- Repetition benefit for both referring expressions and syntactic structures
 - Post hoc: Syntactic repetition benefit not due to individuals’ or verb-specific PD/DO preferences
 - Task x Repetition interaction - Greater benefit for lexical than syntactic repetition

Experiment 4

Motivation for Experiment 4:
- Experiment 2 new-partner syntactic trials identical to Experiment 3 syntactic prime trials
- Different results! E2: No repetition benefit; E3: repetition benefit

Participants: 48 UCSD students

Materials: Same as Experiment 1

Design: Same as Experiment 3 syntactic trials

Discussion:
- Syntactic repetition benefit even with new partner

General Discussion

- Linguistic repetition confers a real and measurable benefit for listeners
 - Not partner-specific
 - Cannot be reduced to preference effects, though they do exist
 - Repeating a single act of production can cause a comprehension benefit
 - Supports the interactive-alignment model (Pickering & Garrod, 2004)

References

Acknowledgements

This material is based upon work supported by the NIH under Grant Numbers F32 HD053242 and HD051030. We thank Stephanie Ang, Luisa Graver, Paige Heath, Janet Park and Kaytynes Reed for their assistance with data collection.